1/2023 | Métricas ad-invariantes em Álgebras de Lie Marcos Ricardo Cavicchioli de Almeida
Este material ´e resultado de um trabalho de inicia¸c˜ao cient´ıfica, projeto de n´umero 2022/07595- Neste projeto, o objetivo principal foi o estudo de ´algebras de Lie munidas de m´etricas adinvariantes. Com o estudo de formas bilineares, a ideia de m´etrica pode ser apresentada, bem como o Finalmente, se estudou no fim do projeto o processo de extens˜ao dupla introduzido por Favre https://copia.ime.unicamp.br/sites/default/files/pesquisa/relatorios/rp-2023-01.pdf |
2/2022 | Tópicos de processos estocásticos Vicenzo Bonasorte Reis Pereira||Élcio Lebensztayn https://copia.ime.unicamp.br/sites/default/files/pesquisa/relatorios/rp-2022-022022.pdf |
1/2022 | Estimates for entropy numbers of multiplier operators of multiple series Sérgio A. Córdoba||Jéssica Milaré||Sérgio A. Tozoni The asymptotic behavior for entropy numbers of general Fourier multiplier operators of https://copia.ime.unicamp.br/sites/default/files/pesquisa/relatorios/rp-2022-012022.pdf |
1/2020 | Extending Multivariate-t Semiparametric Mixed Models for Longitudinal data with Censored Responses and Heavy Tails Thalita B. Mattos||Larissa A. Matos||Victor H. Lachos In this paper we extended the semiparametric mixed model for longitudinal censored data with https://copia.ime.unicamp.br/sites/default/files/pesquisa/relatorios/rp-2020-01.pdf |
2/2019 | Estimates for n-widths of sets of smooth functions on complex spheres Deimer J. J. Aleans||Sergio A. Tozoni In this work we investigate n-widths of multiplier operators defined for functions on a complex sphere and bounded from L^p into L^q. We study lower and upper estimates for the n-widths of Kolmogorov, linear, of Gelfand and of Bernstein, of such operators. As application we obtain, in particular, estimates for the Kolmogorov n-width of classes of Sobolev, of finitely differentiable, infinitely differentiable and analytic functions on a complex sphere, in L^q, which are order sharp in various important situations. https://copia.ime.unicamp.br/sites/default/files/pesquisa/relatorios/rp-2019-02_0.pdf |