Métrica. Funções contínuas. Homeomorfismos. Conjuntos abertos e fechados. Conjuntos compactos. Conjuntos convexos e conexos.
1. Espaços métricos. Definição e exemplos. Bolas e esferas. Subespaços métricos. Conjuntos limitados. Distância de um ponto a um conjunto e distância entre dois conjuntos. Seqüências. Isometrias. Normas. Espaços vetoriais normados. Normas Lp em espaços de dimensão finita.<br>2. A topologia dos espaços métricos. Conjuntos abertos, fechados, ponto interior, ponto aderente, conjunto denso, ponto de acumulação. Interior, fecho e fronteira de um conjunto.<br>3. Funções contínuas. Definição e exemplos. Propriedades de funções contínuas. Funções uniformemente contínuas. Homeomorfismos. Métricas equivalentes. Relações entre conjuntos abertos e continuidade.<br>4. Compacidade. Definição e exemplos. Relação entre continuidade e compacidade. Relação entre continuidade uniforme e compacidade. Distância entre conjuntos compactos.<br>5. Espaços métricos e conjuntos conexos. Definição e exemplos. Propriedades. Conexidade por caminhos. Componentes conexas. A conexidade como invariante topológico.<br>6. Espaços métricos completos. Seqüências convergentes e de Cauchy. Definição de espaços completos e exemplos. Completude de R. Completamento de um espaço métrico.<br>7. Introdução aos espaços topológicos. A topologia métrica. As topologias discreta e indiscreta. Espaços de Hausdorff.
1. Elon L. Lima, Espaços Métricos, Projeto Euclides, IMPA, 5a. ed., 2017.<br><br>2. Hygino H. Domingues, Espaços Métricos e Introdução à Topologia, Editora Atual e EDUSP, 1982.<br><br>3. C. S. Hönig, Aplicações da Topologia à Análise, IMPA, 1976.<br><br>4. I. Kaplansky, Set Theory and Metric Spaces, Allyn and Bacon, 1972.
Por nota e frequência